Subject-specific functional parcellation via Prior Based Eigenanatomy

نویسندگان

  • Paramveer S. Dhillon
  • David A. Wolk
  • Sandhitsu R. Das
  • Lyle H. Ungar
  • James C. Gee
  • Brian B. Avants
چکیده

We present a new framework for prior-constrained sparse decomposition of matrices derived from the neuroimaging data and apply this method to functional network analysis of a clinically relevant population. Matrix decomposition methods are powerful dimensionality reduction tools that have found widespread use in neuroimaging. However, the unconstrained nature of these totally data-driven techniques makes it difficult to interpret the results in a domain where network-specific hypotheses may exist. We propose a novel approach, Prior Based Eigenanatomy (p-Eigen), which seeks to identify a data-driven matrix decomposition but at the same time constrains the individual components by spatial anatomical priors (probabilistic ROIs). We formulate our novel solution in terms of prior-constrained ℓ1 penalized (sparse) principal component analysis. p-Eigen starts with a common functional parcellation for all the subjects and refines it with subject-specific information. This enables modeling of the inter-subject variability in the functional parcel boundaries and allows us to construct subject-specific networks with reduced sensitivity to ROI placement. We show that while still maintaining correspondence across subjects, p-Eigen extracts biologically-relevant and patient-specific functional parcels that facilitate hypothesis-driven network analysis. We construct default mode network (DMN) connectivity graphs using p-Eigen refined ROIs and use them in a classification paradigm. Our results show that the functional connectivity graphs derived from p-Eigen significantly aid classification of mild cognitive impairment (MCI) as well as the prediction of scores in a Delayed Recall memory task when compared to graph metrics derived from 1) standard registration-based seed ROI definitions, 2) totally data-driven ROIs, 3) a model based on standard demographics plus hippocampal volume as covariates, and 4) Ward Clustering based data-driven ROIs. In summary, p-Eigen incarnates a new class of prior-constrained dimensionality reduction tools that may improve our understanding of the relationship between MCI and functional connectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual parcellation of resting fMRI with a group functional connectivity prior

Cortical parcellation based on resting fMRI is an important tool for investigating the functional organization and connectivity of the cerebral cortex. Group parcellation based on co-registration of anatomical images to a common atlas will inevitably result in errors in the locations of the boundaries of functional parcels when they are mapped back from the atlas to the individual. This is beca...

متن کامل

Multimodal Cortical Parcellation Based on Anatomical and Functional Brain Connectivity

Reliable cortical parcellation is a crucial step in human brain network analysis since incorrect definition of nodes may invalidate the inferences drawn from the network. Cortical parcellation is typically cast as an unsupervised clustering problem on functional magnetic resonance imaging (fMRI) data, which is particularly challenging given the pronounced noise in fMRI acquisitions. This challe...

متن کامل

Data-driven fMRI data analysis based on parcellation

Functional Magnetic Resonance Imaging (fMRI) is one of the most popular neuroimaging methods for investigating the activity of the human brain during cognitive tasks. As with many other neuroimaging tools, the group analysis of fMRI data often requires a transformation of the individual datasets to a common stereotaxic space, where the different brains have a similar global shape and size. Howe...

متن کامل

Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography

The parcellation of the cortex via its anatomical properties has been an important research endeavor for over a century. To date, however, a universally accepted parcellation scheme for the human brain still remains elusive. In the current review, we explore the use of in vivo diffusion imaging and white matter tractography as a non-invasive method for the structural and functional parcellation...

متن کامل

An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks

Recent work with functional connectivity data has led to significant progress in understanding the functional organization of the brain. While the majority of the literature has focused on group-level parcellation approaches, there is ample evidence that the brain varies in both structure and function across individuals. In this work, we introduce a parcellation technique that incorporates deli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2014